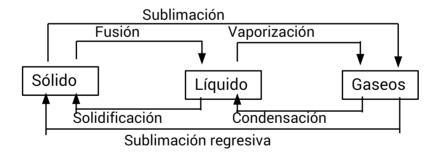


AREA DE CIENCIAS NATURALES QUIMICA UNDECIMO


GASES, PROPIEDADES, LEYES, TEORIA CINETICO-MOLECULAR.

- 1.- Estados de agregación de la materia. Cambios de estado.
- 2.- Teoría cinético-molecular.
- 3.- Leyes de los gases.
 - 3.1. Ley de Boyle-Mariotte.
 - 3.2. Ley De Charles y Gay-Lussac.
 - 3.3. 2ª Ley de Gay-Lussac.
 - 3.4. Ecuación general de los gases ideales.
 - 3.4.1. Aplicaciones: Masa molecular. Densidad.
 - 3.5. Ley de Dalton de las presiones parciales.
- 4.- Interpretación de las leyes de los gases por la teoría cinético-molecular.
- 5- Actividades y Ejercicios.

Objetivo: Analiza las leyes de los gases de acuerdo a su comportamiento.

1.- ESTADOS DE AGREGACIÓN DE LA MATERIA

Una de las propiedades más evidentes de las sustancias es la que puede existir como sólidos, líquidos o gases. Se dice habitualmente que éstos son los **tres estados de agregación de la materia**. Muchas sustancias, bajo las condiciones apropiadas, pueden existir en los tres estados. Cuando se enfría un gas, se condensa para formar un líquido, y finalmente se congela para dar un sólido, pero en todos estos cambios, continúa siendo la misma sustancia. El agua existe en los tres estados en la superficie de la tierra. El agua gaseosa (vapor de agua) esta presente en la atmósfera, el agua líquida forma ríos, lagos y océanos y el agua sólida (hielo) se encuentra como nieve, en los glaciares y en las superficies heladas de lagos y océanos.

- Evaporación: Afecta sólo a la superficie libre del líquido y tiene lugar a cualquier temperatura.
- Ebullición: Afecta a todo el líquido y tiene lugar a una cierta temperatura, aunque ésta depende de la presión exterior.

Las características de los tres estados basadas en descripciones macroscópicas, es decir, que pueden constatarse sin utilizar más que los propios sentidos humanos sin ayudas auxiliares, son las siguientes:

Gases:

- Carecen de forma definida.
- No poseen un volumen propio.
- Son expansibles y compresibles, es decir, tienden a ocupar totalmente el recipiente en el que se introduzcan, y si se reduce el volumen del recipiente, el gas se comprime fácilmente y se adapta al menor volumen.

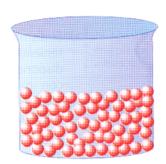
Líquidos: - Carecen de forma definida.

- Poseen su propio volumen definido.
- Son poco o nada compresibles y expansibles.

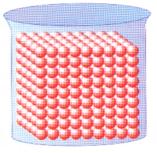
- **Sólidos**: Tienen forma propia.
 - Tienen un volumen definido.
 - No son compresibles ni expansibles, a no ser que se ejerza sobre ellos fuerzas de gran intensidad.

Tanto los gases como los líquidos tienen la propiedad de adaptarse a la forma del recipiente que los contienen, así como la de escapar por un orificio que se practique en el recipiente, por lo que reciben el nombre de fluidos.

Normalmente, un líquido tiene una densidad mucho mayor (700 a 1.700 veces) que un gas, mientras que un sólido tiene una densidad ligeramente mayor que un líquido.


2.- TEORÍA CINÉTICO-MOLECULAR

En 1.857, el físico alemán R. Clausius desarrolló un modelo que pretendía explicar la naturaleza de la materia y reproducir su comportamiento. Se conoce como teoría cinético-molecular o teoría cinética, y fue desarrollada inicialmente para los gases. Puede resumirse en las siguientes premisas:


- Los gases están formados por partículas (átomos o moléculas) que se encuentran a grandes distancias en comparación con su tamaño, por lo que el volumen realmente ocupado por las moléculas es despreciable frente al volumen total, es decir, la mayor parte del volumen ocupado por un gas es espacio vacío.
- Las moléculas están en un continuo movimiento aleatorio. Se desplazan en línea recta chocando entre sí y contra las paredes del recipiente. Estos choques son elásticos, es decir, en el choque una molécula puede ganar energía y la otra perderla, pero la energía total permanece constante.
- Las fuerzas atractivas de cohesión entre las moléculas, o fuerzas intermoleculares, son muy débiles o nulas.
- La temperatura es proporcional a la energía cinética media de las moléculas y por tanto a la velocidad media de las mismas. (Ec = 1/2 m .v 2)

- La presión ejercida por un gas es proporcional al número de choques por unidad de superficie de las moléculas contra las paredes del recipiente que lo contiene.
- Este modelo también es aplicable a sólidos y líquidos:

En una sustancia gaseosa, las fuerzas atractivas intermoleculares son muy débiles y su influencia sobre el movimiento de las moléculas es despreciable que se desplazan a gran velocidad, sin embargo, al enfriar el gas la velocidad de sus moléculas se reduce, lo que hace que las fuerzas intermoleculares cobren importancia dando como resultado que las moléculas dejen de moverse independiente y aleatoriamente. Cuando la temperatura se hace lo suficientemente baja, las moléculas están en contacto y a pesar de no poder moverse independientemente siguen teniendo la suficiente energía cinética para poder desplazarse unas respecto de otras y el gas pasa al estado líquido.

Si la temperatura se hace más baja, las fuerzas intermoleculares son muy intensas lo que obliga a que las moléculas, en contacto unas con otras, queden atrapadas en una posición fija y sólo tengan libertad de girar y oscilar ligeramente en torno a esas posiciones medias, adoptando por lo general, una disposición ordenada característica de la mayoría de los **sólidos**.

• Con la teoría cinético-molecular se pueden explicar las características de cada estado:

<u>Sólidos</u>: Dado que las partículas se encuentran en contacto y no pueden desplazarse, los sólidos tienen una forma y volumen propios, no son compresibles ni expansibles, son relativamente duros y rígidos y su densidad es alta.

<u>Líquidos</u>: Dado que las partículas se encuentran muy próximas y pueden desplazarse unas sobre otras, tienen volumen propio pero se adaptan a la forma del recipiente que las contiene y su densidad es algo menor que la de los sólidos.

<u>Gases</u>: Como las fuerzas de atracción son muy débiles, las partículas están muy separadas unas de otras y se mueven en todas las direcciones y dado que no hay nada que retenga las partículas próximas entre sí, los gases se expanden hasta llenar el recipiente, y por existir grandes distancias entre ellas, son fácilmente compresibles y su densidad es mucho menor que la de los sólidos y líquidos.

A.1. Explica por la teoría cinético-molecular los procesos de fusión y ebullición.

3.- LEYES DE LOS GASES

Cualquier muestra dada de un gas puede describirse en función de cuatro propiedades fundamentales: masa, volumen, presión y temperatura. La investigación de estas propiedades con el aire condujo a establecer relaciones cuantitativas entre ellas, válidas para todos los gases.

3.1. LEY DE BOYLE-MARIOTTE: PRESION Y VOLUMEN

El que los gases son compresibles es un hecho familiar. Cuando se aumenta la presión sobre una cantidad dada de un gas, como sucede en una bomba neumática, el volumen del gas disminuye: cuanto mayor es la presión menor se hace el volumen. En 1.660, el químico inglés Robert Boyle estudió los efectos de la presión sobre el volumen de aire, observó que cuando duplicaba la presión el volumen de aire se reducía a la mitad; si la presión se multiplica por cuatro el volumen se reduce a la cuarta parte de su valor original, etc. Esta relación ha resultado ser válida para cualquier gas.

En otras palabras, lo que Boyle encontró es que:

Para una determinada masa de gas el volumen es samente proporcional a la presión ejercida, si la temperatura mantiene constante:

$$V = constante.1 /$$
 ; (T y m constantes)

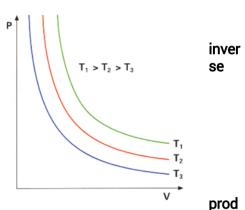
Se puede enunciar también de la siguiente forma:

"Para una misma masa de un gas a temperatura constante el ucto del volumen del gas por la presión que ejerce es constante"

Esta relación es conocida como Ley de Boyle-Mariotte.

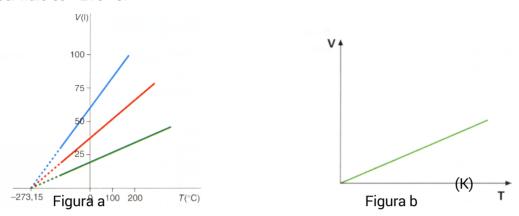
Una forma conveniente de escribir la ley de Boyle para comparar la misma muestra de gas, a temperatura constante, bajo diferentes condiciones de presión y volumen, es

$$P_1 \cdot V_1 = P_2 \cdot V_2 = P_3 \cdot V_3$$
 ; (T y m constantes)


Si la presión y el volumen de una cantidad dada de un gas son inicialmente P_1 y V_1 y la presión se cambia hasta P_2 , el nuevo volumen V_2 , viene dado por esta relación.

■ El hecho de que un gas es compresible repercute en su densidad; cuanto más se comprime tanto más denso se hace. Ello es debido a que el mismo número de moléculas y la misma masa ocupan un volumen menor. Por ejemplo, el aire que se encuentra directamente sobre la superficie de la tierra está comprimido por la masa de aire que se encuentra sobre él; por tanto, cuanto mayor es la altura menos comprimido está el aire. El resultado es que la densidad y la presión del aire decrecen conforme aumenta la altitud. Así, a nivel del mar es de 1 atm, y a 2.500 m (en las Montañas Rocosas) la presión es de sólo 0,75 atm y a 8.000 m (en el Himalaya, donde están las cimas más altas del mundo) la presión atmosférica es de únicamente 0,47 atm.

A.2.- Calcula el volumen ocupado por una muestra de hidrógeno a 3,00 atm si dicha muestra tiene un volumen de 6,20 l a una presión de 1,05 atm. Sol.- 2,17 l.


3.2. LEY DE CHARLES y GAY-LUSSAC: TEMPERATURA Y VOLUMEN

Unos cien años después del trabajo de Boyle, Charles y Gay-Lussac investigaban el efecto que produce en el volumen el cambio de la temperatura de una cantidad dada de aire para la que la presión se mantuviera constante. Encontraron que el gas se expandía al calentarse. Además, los experimentos demuestran que la expansión de un gas es uniforme; así, por cada grado de aumento de la temperatura, el aumento de volumen del gas es de 1/273 veces su volumen a 0 °C. Por tanto, tal

Pág.

y como muestra la figura (a), el volumen de un gas es una función lineal de su temperatura Celsius (la gráfica V- t es una recta). El volumen del gas se va contrayendo a medida que la temperatura desciende pero si ésta es lo suficientemente baja, el gas se licúa (la recta se corta). Si prolongamos la recta obtenemos por extrapolación que la temperatura a la cual el volumen de cualquier gas debería ser nulo es −273 °C.

En la práctica, todos los gases se condensan para dar líquidos y sólidos a temperaturas superiores a los -273 °C por lo que, de hecho, ningún gas puede ser enfriado hasta que se anule su volumen. Sin embargo, la idea de que existe una temperatura que es la mínima posible- es decir, un cero absoluto de temperaturas- es de extraordinaria importancia. En lugar de escoger arbitrariamente el punto de fusión del hielo como el cero de la escala de temperaturas, como se hace en la escala Celsius, es posible escoger de forma lógica y conveniente el cero absoluto como cero de una escala de temperaturas. Esta elección del cero constituye la base de la **escala absoluta o kelvin de temperaturas** que fue sugerida por primera vez por el científico británico Lord Kelvin (1824-1.907).

De acuerdo con medidas precisas, el cero absoluto de temperaturas es -273,15 °C.

Así, **0** K = -273,15 °C, y la escala Kelvin (K) se relaciona con la Celsius mediante la expresión:

Debe observarse que, por convenio, el signo de grado (°) no se utiliza cuando se expresan las temperaturas en la escala Kelvin. La unidad en la escala absoluta es el Kelvin (K) y una temperatura tal como 100 K se lee como "cien Kelvins".

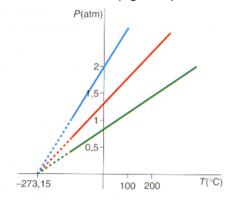
Cuando la temperatura se expresa en la escala absoluta el volumen de un gas resulta directamente proporcional a la temperatura (figura b), lo que no se cumple si la temperatura se mide en la escala Celsius. Esta expresión se resume en la **Ley de Charles y Gay-Lussac:**

"Para una determinada cantidad (masa) de un gas que se mantiene a presión constante, el volumen es proporcional a su temperatura en la escala Kelvin".

$$V = constante. T$$
 , $(P y m)$ $V / T = constante$, $(P y m)$

Una forma conveniente de escribir la ley de Charles y Gay-Lussac para comparar la misma muestra de gas, a presión constante, bajo diferentes condiciones de volumen y temperatura, es

$$V_1 / T_1 = V_2 / T_2$$
 , (P y m


A.3.- ¿A qué temperatura debe enfriarse una muestra de nitrógeno de 900 ml de volumen a 25°C para que su volumen se reduzca hasta 350 ml?. Sol.- 116 K = -157 °C.

Puesto que el volumen de un gas depende tanto de la presión como de la temperatura, decir que una cierta muestra de gas ocupa un volumen concreto no resulta suficiente, la presión y la temperatura también deben ser especificadas. Para que las comparaciones resulten más sencillas, lo que se suele hacer es referir el volumen de una muestra dada de un gas a 0 °C (273,15 K) y 1 atm; estas condiciones son conocidas como condiciones normales (lo que se suele abreviar como c.n.).

3.3. 2ª LEY DE GAY-LUSSAC: PRESION Y TEMPERATURA

Gay-Lussac también estudió el efecto que produce en la presión el cambio de la temperatura de una cantidad dada de aire manteniendo el volumen constante. Encontró que la presión del gas aumentaba uniformemente al calentarse.

Si la temperatura se expresa en °C se obtiene una función lineal como muestra la figura a, mientras que si se expresa en K, se observa que la presión es directamente proporcional a la temperatura absoluta (figura b).

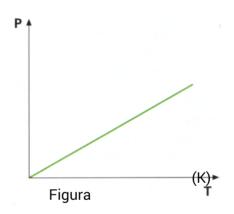


Figura b

"Para una determinada cantidad (masa) de un gas que se mantiene a volumen constante, la presión es proporcional a su temperatura en la escala Kelvin".

Para la misma muestra de gas, a volumen constante, bajo diferentes condiciones de presión y temperatura:

$$P_1 / T_1 = P_2 / T_2$$
 , (V y m

3.4. ECUACIÓN GENERAL DE LOS GASES IDEALES

Combinando las leyes vistas anteriormente:

а

P. V = constante (para Tym constantes): Ley de Boyle

V / T = constante (para P y m constantes): Ley de Charles y Gay-Lussac

P / T = constante (para V y m constantes): 2ª Ley de Gay-Lussac

V = n . constante (para P y T constantes): Ley de Avogadro

se obtiene la ecuación conocida como ecuación general de los gases ideales:

$$PV/n.T = constante$$
 o bien $P.V = n.R.T$

donde R es una constante denominada **constante de los gases**. Si la presión se expresa en atmósferas, el volumen en litros y la temperatura en K, el valor de R es de 0,082 atm.l/mol.K, mientras que en el S.I. el valor de R = 8,3 J / mol.K

Para una cantidad determinada de gas, la ley de los gases ideales puede expresarse también en función de las condiciones iniciales y las finales:

$$P_1V_1/T_1 = P_2.V_2/T_2$$
; (m =

- La ecuación de los gases ideales, se cumple estrictamente para los llamados gases ideales: gases hipotéticos en los que el tamaño de las moléculas es absolutamente despreciable frente a la distancia existente entre las moléculas (volumen nulo) y en el que además no existieran fuerzas intermoleculares. Sin embargo, el comportamiento de los gases reales difiere ligeramente del ideal a causa del tamaño de las moléculas y también porque existen fuerzas intermoleculares. No obstante, para todos los cálculos que se efectúan normalmente, puede suponerse que los gases reales se comportan como se fueran ideales. La ecuación de los gases ideales se aplica con bastante exactitud a todos los gases cuando se encuentran a presiones muy bajas y temperaturas elevadas, es decir, cuando las moléculas están muy alejadas unas de otras y se desplazan con velocidades elevadas. Sigue siendo una buena aproximación bajo la mayoría de las condiciones posibles, pero se hace menos exacta cuando las presiones son muy elevadas y las temperaturas muy bajas. A presiones muy elevadas ya no se puede seguir considerando despreciable el volumen de las moléculas frente a las distancias intermoleculares. Por tanto, el volumen de un gas resulta ser algo mayor que lo esperado de acuerdo con la ley de Boyle. A temperaturas muy bajas las moléculas se mueven lentamente y su energía cinética es pequeña. Entonces, incluso fuerzas intermoleculares débiles hacen que las moléculas se mantengan unidas en cierta medida y el volumen del gas es algo menor que el predicho por la ley de Charles.
- A partir de la ley de los gases ideales se pueden deducir las leyes anteriores, sin más que hacer constantes las correspondientes variables:

```
Si T y m (n) son constantes: P.V = n.R.T = cte.cte.cte = cte ; P.V = cte Ley de Boyle Si P y m (n) son constantes: P.V = n.R.T; cte.V = cte.cte.T; V/T = cte Ley de Charles Si V y m (n) son constantes: P.V = n.R.T; P.cte = cte.cte.T; P/T = cte 2a ley de Gay-Lussac Si P y T son constantes: P.V = n.R.T; cte.V = n.cte.cte; V = n.cte Ley de Avogadro
```

A.4.- Calcular el número de moles de hidrógeno contenido en una muestra de 100 cm³ a una temperatura de 300 K y una presión de 750 mmHg. Sol.- 4,01.10³ moles.

A.5.- Calcular la presión que ejercen 3,00 g de N_2 gas en un recipiente de 2,00 l de capacidad a la temperatura de -23 °C. Dato: Ar(N)= 14. Sol.- 1,10 atm.

A.6.- Si una muestra de oxígeno gaseoso tiene un volumen de 425 ml a 70 °C y 0,950 atm de presión, ¿cuál será su volumen en c. n.?. Sol.- 321,4 ml.

3.4.1. APLICACIONES DE LA LEY DE LOS GASES IDEALES

a) Cálculo de la masa molecular de un gas

De acuerdo con la ley general de los gases: $P \cdot V = n \cdot R \cdot T$

y como el número de moles, n, es igual a: n = m / M (masa de un mol), resulta:

$$P \cdot V = \frac{m}{M_m} \cdot R \cdot T$$
, si despejamos la masa molar, M,

$$M_{m} = \frac{m.R.T}{P.V}$$
 tenemo

Conociendo el valor de la masa de un mol (masa molar) se puede deducir fácilmente el valor de su masa molecular (mismo valor numérico pero expresado en u).

En consecuencia, siempre que una sustancia pueda vaporizarse sin descomposición, la medida de la masa de un volumen conocido en estado gaseoso es el camino más práctico para hallar la masa molecular

b) Cálculo de la densidad de un gas

De la ecuación general de los gases: $P \cdot V = \frac{m}{M_m} \cdot R \cdot T$, es decir: $P \cdot M_m = \frac{m}{V} \cdot R \cdot T$ teniendo en cuenta que la densidad es: d = m / V, resulta: $P \cdot M_m = d \cdot R \cdot T$

por lo que podremos determinar la densidad de un gas a partir de:

$$d = \frac{P \cdot M_m}{R \cdot T}$$

3.5. LEY DE DALTON DE LAS PRESIONES PARCIALES

En una mezcla de gases en la que no se produce ninguna reacción entre ellos, cada uno de los gases se distribuye uniformemente a través del recipiente y cada molécula se mueve independientemente de las demás, es decir, del mismo modo que lo haría en ausencia de moléculas de los otros gases. Por lo tanto, la presión ejercida por cualquier gas de una mezcla es la misma que ejercería si el gas llenara por sí solo el recipiente. Esta presión es denominada **presión parcial del gas**.

En consecuencia: "La presión total ejercida por una mezcla gaseosa es igual a la suma de las presiones parciales de los gases componentes de la mezcla".

$$P_{total} = P_1 + P_2 + P_3 + ...$$

donde P1, P2, etc., representan las presiones parciales de cada gas en la mezcla. Esta ley fue formulada por John Dalton en 1.803 y es conocida como la ley de Dalton de las presiones parciales.

Como la presión parcial de un gas es proporcional al número de moles de dicho gas (y por tanto al número de moléculas) presentes en la mezcla: Pi = k . ni , sabiendo el valor de la presión total se puede calcular la presión parcial de cada gas, si se conoce su composición volumétrica o molecular.

Eiemplo: en la atmósfera el 78% de las moléculas son de N2, el 21% son de O2 y el 1% de Ar. Si la presión total es de 1,00 atm, el nitrógeno ejerce una presión parcial de 0,78 atm, el oxígeno 0,21 atm y el argón 0,01 atm.

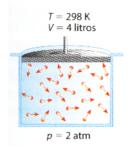
En general, para un gas, i, de la mezcla:
$$P_i = X_i \cdot P_T$$
, siendo X_i (fracción molar) = $\frac{n_i}{n_T}$

La ecuación de los gases ideales se le puede aplicar a la mezcla y a todos y cada uno de los gases de la mezcla.

Así, por ejemplo, para el gas 2 se cumplirá P_2 .V = n_2 .R.T, siendo V el volumen total de la mezcla gaseosa.

En general, para el gas i, se cumplirá P_i . $V = n_i$. R. T. Para toda la mezcla: P_T . $V = n_T$.R. T.

Si en una mezcla de gases se produce una reacción entre sus componentes, para determinar la presión total hay que tener en cuenta la esteguiometría de la reacción.

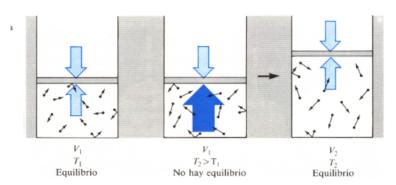

A.7.- Un matraz de 2 litros contiene 3 g de dióxido de carbono, CO2, y 0,1 g de helio, He. La temperatura de la mezcla es de 17 °C. ¿Cuáles son las presiones parciales de CO₂ y He?. ¿Cuál es la presión total ejercida por la mezcla gaseosa? Datos: masas atómicas C = 12, O = 16, He = 4 Sol.- 1,11 atm.

4.- INTERPRETACIÓN DE LAS LEYES DE LOS GASES POR LA TEORÍA CINÉTICA

El hecho de que haya grandes distancias entre las moléculas de los gases y que las fuerzas intermoleculares sean muy débiles, despreciables, hace que las moléculas sean independientes unas de otras, por lo que las propiedades de los gases son independientes de la naturaleza de los mismos, es decir, todos los gases se comportan del mismo modo. Por el contrario, en un sólido o en un líquido, las propiedades dependen de la intensidad de las fuerzas intermoleculares, así como del tamaño y forma de las moléculas.

a) Ley de Boyle-Mariotte (P.V = cte, para m y T ctes):

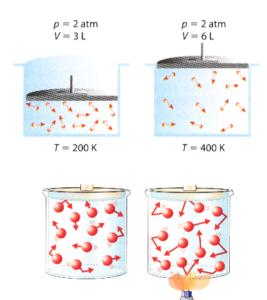
Supongamos que tenemos una cierta masa de gas encerrada en un recipiente cuya cubierta superior está provista de un émbolo móvil. Al reducir el volumen a la mitad manteniendo constante la temperatura, y por tanto las moléculas moviéndose a la misma velocidad, el número de colisiones por unidad de superficie que se producirán contra las paredes del recipiente será el doble, ya que el espacio se ha reducido a la mitad. En consecuencia la presión alcanzará un valor doble de la original.


 $T = 298 \, \text{K}$ V = 2 litros

Pág.

b) Ley de Charles y Gay-Lussac (V = cte . T , para m y P ctes):

Si tenemos una cierta masa de gas encerrada en un recipiente provisto de un émbolo móvil a una cierta temperatura, las moléculas chocarán contra las paredes del recipiente y el émbolo ejerciendo una cierta presión que equilibra a la presión atmosférica exterior. Al calentar el gas, las


partículas se mueven deprisa, produciéndose un mayor número de choques contra el émbolo, v por tanto, un aumento la presión interior que superará a la presión atmosférica exterior, lo que hace que el émbolo se desplace con consiguiente aumento de volumen.. Este aumento de volumen reduce el número de colisiones contra el émbolo y por

tanto se reduce la presión interior. De esta forma, el desplazamiento del émbolo tiene lugar hasta que la presión interior vuelve a equilibrarse con la presión exterior. Así pues, a presión constante, el volumen aumenta conforme lo hace la temperatura.

c) 2ª Ley de Gay-Lussac (P = cte . T, para m y V ctes)

Supongamos un recipiente de volumen constante que contiene una cierta masa de gas. Al aumentar la temperatura aumenta la velocidad de las moléculas, produciéndose un mayor número de choques contra las paredes del recipiente, lo que origina un aumento de la presión.

<u>Cero absoluto de temperaturas</u> (límite inferior de temperaturas)

Al enfriar un gas la velocidad y la energía cinética media de sus moléculas disminuye, por lo que debe alcanzarse una temperatura a la cual la energía cinética y la velocidad se anulen. Lógicamente, no pueden disminuirse más allá de este límite, y ésta debe ser la temperatura más baja que puede alcanzarse (cero absoluto = 0 K).

ACTIVIDADES

ACTIVIDAD No. 1: CUESTIONES Y PROBLEMAS

- 1.- Basándote en la teoría cinético-molecular, justifica:
- a) Por qué los sólidos y líquidos se dilatan al calentarlos.
- b) Al circular un coche durante varias horas seguidas aumenta la presión de los neumáticos.
- 2.- El volumen de una masa gaseosa a -15 °C es de 110 litros. Calcula el volumen que ocuparía a -24 °C si la transformación es isobárica (P = cte). Sol: 106.2 litros.
- 3.- Un tanque metálico contiene gas a $20\,^{\circ}\text{C}$ y a una presión de $90\,\text{cm}$ de Hg. Si la temperatura del gas se eleva a $100\,^{\circ}\text{C}$ y la transformación es isócora (V = cte), calcula la presión del gas a la nueva temperatura.

Sol: 114,6 cm Hg.

4. Un neumático de una motocicleta tiene un volumen de 10 litros y se llena de aire a una presión de 3 atm, a 27°C. Después de circular varias horas, la T se eleva a 57°C y el volumen se supone invariable. Calcula: a) la presión que habrá en el neumático, b) el volumen del gas si la presión hubiera aumentado sin variar la T.

Sol: a) 3,3 atm, b) 9,09 litros.

- 5.- El volumen de un gas a 20 °C y 5 atm de presión es 50 litros. ¿Qué volumen ocupará en c.n.?. Sol: 233 litros.
- 6.- ¿Qué volumen ocuparán 88 g de dióxido de carbono gas a 2 atm y 300 K?. ¿Cuántos moles habrá de ese mismo gas en 20 litros a 742 mm Hg y 28 °C?.

Datos: masas atómicas (u): C = 12, O = 16

Sol: 24,6 litros y 1,26 moles.

7. Un volumen de 2,38 litros de un gas, medido a 97 $^{\circ}$ C y 720 mm Hg, tiene una masa de 2,81g. Calcula la masa molecular de dicho gas.

Sol: 37,8

- 8. Calcula la densidad del vapor del alcohol etílico cuando se encuentra en un recipiente cerrado:
- a) en c.n. , b) a 0,8 atm y 37 °C.

Datos: mat C = 12, O = 16, H = 1

Sol: 2,05 g/l , b) 1,45 g/l

- 9. Sabiendo que la densidad de cierto gas a 30 °C y 310 mm Hg es de 1,02 g/l, calcula la masa molecular del gas. Sol: 62,1
- 10.- Calcula la masa de aire a 23 °C y 749 mm Hg que hay en una habitación de dimensiones $4,5 \times 3,1 \times 2,4$ m. Toma como masa molecular del aire 29. Sol: 39,42 kg
- 11. En un recipiente cerrado hay 44 g de dióxido de carbono y 70 g de nitrógeno a la presión total de 0,5 atm. Calcula la presión parcial de cada gas.

Datos: mat C = 12, O = 16, N = 14 u.

Sol: 0,143 atm y 0,357 atm

12.- Una mezcla de gases a 1 atm de presión contiene en volumen 30 % de H₂, 20 % de N₂ y 50% de CO. ¿Cuál es la presión parcial de cada gas?.

Sol: $pH_2 = 0.3$ atm, $pN_2 = 0.2$ atm, pCO = 0.5 atm.

13.- Una muestra de oxígeno húmedo saturado con vapor de agua a 22 °C ejerce una presión total de 748 mm Hg. a) Calcula la presión parcial del O2 contenido en la muestra, si se sabe que la

presión de vapor del agua a 22 °C es de 20 mm Hg. b) Si el volumen de la muestra es 320 ml, ¿cuántos gramos de oxígeno contiene?.Ar(O)=16 Sol: a) 728 mm Hg, b) 0,406 g.

14. Si la densidad del nitrógeno líquido es 1,25 g/cm³. a) ¿A qué volumen se reducirá 1 litro de nitrógeno gaseoso en c.n. al condensarse?. b) Calcula la fracción aproximada del volumen del gas que ocupan las moléculas (no considerar los huecos que hay entre las moléculas del líquido).

Dato: mat N = 14.

Sol: a) 1 cm³, b) 0,1 %

15. Un matraz de vidrio pesa vacío 21,786 g, lleno de nitrógeno pesa 22,473 g y lleno de un gas desconocido, en las mismas condiciones de P y T, pesa 22,957 g. Halla el peso molecular del gas. Dato: mat N = 14.

Sol: 47,9

- 16.- El volumen que corresponde a una inspiración de aire es, aproximadamente, 0,5 litros y el número de inspiraciones por minuto 18. Siendo las condiciones atmosféricas 20 °C y 745 mm Hg, ¿cuántos gramos de oxígeno se aspiran por minuto?. En el aire el 21% en volumen es de oxígeno. Ar(0)=16. Sol: 2,47
- 17.- Calcula la densidad aproximada del metano CH₄, a 20 °C y 5 atm.

Datos: masas atómicas (u): C = 12, H = 1

Sol: 3,33 g/l.

18.- En un recipiente de 10 litros se mezclan 6,011 g de hidrógeno con 8,645 g de oxígeno y, después de cerrado, se calienta a 300 ° C. Calcula la presión total de la mezcla.

Datos: masas atómicas (u): H = 1, O = 16

Sol: 15,3 atm

- 19. La composición volumétrica de una mezcla gaseosa es la siguiente: 30 % de metano, 50 % de dióxido de carbono y 20% de monóxido de carbono. Si la presión total es de 2 atm ¿ cuál es la presión parcial de cada uno de los gases?
- 20. Un recipiente de 1 litro contiene a 168 °C una mezcla gaseosa de H₂ y de O₂, de presiones parciales 326 y 652 mm Hg respectivamente. En esas condiciones se hace saltar la chispa eléctrica, produciéndose la explosión de la mezcla y alcanzándose una T de 197 °C. Se pide: a) reacción que ha tenido lugar y la composición volumétrica o molar. b) presión final en el recipiente Sol: a) 40 % agua y 60 % oxígeno. b) 1,14 atm.

ACTIVIDAD No. 2: PROBLEMAS

- 1. 30,0 g de gas etino se encierran en un cilindro de 80,0 ml a una presión de 740mm de Hg ¿a qué temperatura se encuentra? ¿A qué temperatura se debe colocar el gas etino para que ocupe un volumen de 200 ml si la presión no se modifica?
- 2. 30,0 g de gas metano se encierran en un cilindro de 150 cm³ a una presión de 0,750 atm ¿a qué temperatura se encuentra? ¿A qué presión de debe colocar el gas metano para que su volumen sea de 150 ml y la temperatura de 50,0 °C?
- 3. ¿Cuál es la densidad del amoníaco gaseoso a 100 °C y 1,15 atm?
- 4. En un día de invierno una persona aspira 450 ml de aire a -10,0 °C y 756mm de Hg ¿Qué volumen ocupará este aire en los pulmones donde la temperatura es de 37,0 °C y la presión es de 752 torr?
- 5. Considere el siguiente sistema:

Si se abre la llave ¿Cuál será la presión final de la mezcla? Enunciar la o las leyes que aplica.

- 6. Una muestra de 0,800 g de un gas ideal se encuentra en un recipiente de 930 ml a 27,0 °C de temperatura y 1,05 atm de presión. ¿Cuál es la masa molar molecular del gas?
- 7. Explica que significa el término gas ideal..
- 8. La mezcla de 40,0 g de oxígeno y de 40,0 g de helio tiene un **P** total 0,900 atm. ¿Cuál es la P parcial del oxígeno?
- 9. Explica qué es el calor y qué es la temperatura. Diferencia fundamental entre ambos conceptos.
- 10. Explica cuáles son los procesos por los que el calor pasa de un cuerpo a otro.
- 11. Indica si es V o F y justifica cada respuesta utilizando la teoría cinético- molecular:
 - a) El amoníaco gaseoso si se encuentra a altas presiones y altas temperaturas tiene un comportamiento que se acerca al ideal.
 - b) La presión de un gas en un recipiente de volumen constante aumenta cuando se incrementa la temperatura.
- 12. Una bomba metálica de 4,00 L contiene 4,20 g de CCl₄ (g) y 2,50 g de C₂H₄(g) a 300 °C.
 - a) Determina la fracción molar de cada gas.
 - b) Calcula la presión parcial del eteno y la presión total.
 - c) Si se transfiere el eteno a un recipiente de 8,00 L, ¿cuál será la presión si la temperatura no varía?
 - d) Enuncia las leyes que aplica para resolver los apartados b y c.
- 13. El oxígeno gaseoso utilizado en un hospital se almacenó en un cilindro de 70,0 L a la temperatura de 22,0 $^{\circ}$ C y presión de 150 atm
 - a) ¿Cuál es la densidad del oxígeno gaseoso?
 - b) ¿Cuál es el volumen ocupado por el oxígeno a la presión normal si la temperatura no varía?
 - c) Enuncie y explique la ley utilizada en la parte "b" por la teoría cinética molecular de los gases
 - d) Si el flujo de gas que necesita un paciente es de 8,00 L/min (a presión normal y temperatura constante) ¿durante cuántas horas se puede utilizar el cilindro conteniendo oxígeno?
- 14. Explica estas afirmaciones usando postulados de la teoría cinética molecular de los gases y gráficas si corresponde:
 - 1- Al aumentar la temperatura de un gas a presión constante disminuye la densidad
 - 2- Un globo de Helio se expande al elevarse en el aire (suponga temperatura constante)
- 15. El análisis de cierto compuesto revela que su composición porcentual en masa es 40% de C, 6,67% de H, y 53,33% de O. ¿Cuál es la fórmula empírica del compuesto? Si la masa molecular es de 180 u, ¿cuál es la fórmula molecular?

- 16. Un sulfuro de hierro contiene 2.233 g de Fe y 1.926 g de S. Si la masa molar del compuesto es 208 g, ¿cuál es la fórmula molecular del compuesto?
- 17. La estricnina es un veneno muy peligroso usado como raticida. La composición del mismo es C 75,45%; H 6,587%; N 8,383%; O 9,581%. Encontrar su fórmula empírica.
- 18. Se ha encontrado que 0,897 g de un compuesto gaseoso que contiene 63,6% de nitrógeno y 36,4 % de oxígeno ocupan 524 CM3 a una presión de 730 mm Hg y a una temperatura de 28°C.
- A. ¿Cuál es la masa molar del gas?
- B. ¿Cuál es la fórmula molecular del gas?
- C. ¿Cuántos átomos de nitrógeno hay en la masa inicial del compuesto gaseoso?
- **D.** Datos: Ar N = 14.0 O = 16.0
- 19. 12.- Una piscina contiene aproximadamente 900m³ de agua. La temperatura del agua es de 16°C y queremos elevarla a 32°C ¿Qué energía se necesita para elevar la temperatura de este volumen de agua?¿Cuántos tiempo tardaría un calentador eléctrico en suministrar esta energía necesaria suponiendo que su potencia es de 10⁵ J/s?
- 20. 16.- Determinar la masa atómica del galio, sabiendo que existen dos isótopos ⁶⁹Ga y ⁷¹Ga, cuya abundancia relativa es, respectivamente, 60,2% y 39,8%. Indica la composición de ambos isótopos sabiendo que el número atómico del galio es 31.
- 21. Se tienen 8, 5 g de amoniaco y eliminamos 1,5 10²³ moléculas.
- A. ¿Cuántos moles de amoniaco quedan?
- B. ¿Cuántas moléculas de amoniaco quedan?
- C. ¿Cuántos gramos de amoniaco guedan?
- D. ¿Cuántos moles de átomos de hidrógeno quedan?
- 22. Calcula el número de átomos y moléculas presentes en:
- A. En 0.5 moles de SO₂.
- B. En 14.0 g de nitrógeno (gas)
- C. En 4,0 g de hidrógeno (gas)